

Low-power digital microwave radiometer technologies

Jeff Piepmeier, Ed Kim, Kevin Horgan – NASA GSFC Joe Hass, Jody Gambles – Univ. Idaho CAMBR Willie Thompson, Wesley Hall – Morgan State CAMRA Carl Johnson-Bey – Morgan State University

Outline

- Background
 - Digital radiometer
 - Polarimeters and calibration
- Bench-top radiometer
 - Dual-channel receiver
 - Digital correlator
 - Correlated noise source
 - Waveguide noise standard
- SiGe RF-ADC
- Discussion

Background

- Digital radiometry move ADC before detector
- Weinreb autocorrelation spectrometer (1961)
- Types of digital radiometers
 - Correlation based
 - Imaging interferometer
 - Spectrometer autocorrelator
 - Polarimeter cross-correlator

- DSP based
 - Imaging phased array
 - Spectrometer filter bank
- RFI mitigation

Digital Radiometer Types

Spectrometer

Polarimeter

Poincare Sphere

Stokes Vector

Why Polarimetry?

- Good place to study digital radiometers
 - Conventional real aperture
 - One complex correlation
 - Challenging: large bandwidth and low power
- Timely
 - COREOLIS/WINDSAT NPOESS/CMIS
 - AQUARIUS HYDROS SMOS/MIRAS
- Types
 - Incoherent, e.g. WINDSAT
 - Coherent (Adding and Multiplying), e.g.
 AQUARIUS

Coherent polarimeter 1. (adding type)

June 23, 2004

NASA Earth Science Technology Conference

Coherent polarimeter 2. (multiplying type)

Technology Conference

General system equation

$$\begin{bmatrix} v_a \\ v_b \\ v_U \end{bmatrix} = \begin{bmatrix} G_{aa} & G_{ab} & G_{aU} \\ G_{ba} & G_{bb} & G_{bU} \\ G_{Ua} & G_{Ub} & G_{UU} \end{bmatrix} \begin{bmatrix} T_{A,a} \\ T_{A,b} \\ T_{A,U} \end{bmatrix} + \begin{bmatrix} o_a \\ o_b \\ o_U \end{bmatrix}$$

Correlating polarimeter

$$\begin{bmatrix} v_a \\ v_b \\ v_U \end{bmatrix} = \begin{bmatrix} G_{aa} & 0 & 0 \\ 0 & G_{bb} & 0 \\ 0 & 0 & G_{UU} \end{bmatrix} \begin{bmatrix} T_{A,a} \\ T_{A,b} \\ T_{A,U} \end{bmatrix} + \begin{bmatrix} o_a \\ o_b \\ o_U \end{bmatrix}$$

Need correlator gain

Calibration: "polarimetric efficiency"

$$\eta = \frac{\int_{-\infty}^{+\infty} H_A(f) H_B^*(f) df}{\int_{-\infty}^{+\infty} |H_A(f)|^2 df \cdot \int_{-\infty}^{+\infty} |H_B(f)|^2 df} 1^{1/2}$$

Correlated noise source from radio astronomy

Dual-channel Receiver

 $0.18^{\circ} \pm 7.5^{\circ}$

0.1 dB + 1.5 dB/-0 dB

 $\eta = 0.991 \angle 1.1^{\circ}$

Correlator

- Performs the multiply and accumulate (MAC)
- 3-level (1.5-bit) quantization
- Four inputs (AI,AQ,BI,BQ)
- Computes all products (self- and cross-)
 - Histogram counters (self-products)
 - II,IQ,QI, and QQ (cross-products)
- One-cycle buffer and uP interface
- Power dissipation: 3-mW core, 7-mW interface
- Prediction (1-bit MAC is <0.2 mW)

Three level digital correlation

- Inputs v_a and v_b are jointly Gaussian $(\sigma_a^2, \sigma_b^2, \rho)$
- Use expected values to find the input statistics from the output sums.
- $T_U = 2\rho (T_{sys,A} T_{sys,B})^{1/2}$

Correlated Noise Source

- Cal. polarimetric efficiency
- Phase imbal/amp ripple
- Part of receiver calibration
- Thermal stability

<1 degree of phase shift over 30 C temp swing

Waveguide Noise Standard (WGNS)

Reference input to radiometer

- $\rho_{\text{in,max}} = 0.9887$
- Up to 14000 K input noise temperature
- 360 degree phase variation available

- WGNS and correlator functional test
- Null offset test
- CNS test

Correlator output variation with WGNS phase difference

Null offset over time

Input signal of 50 mV rms or -13 dBm (50 Ω)

158 uV or -43 dBm (50 Ω) correlated noise makes offset = 0.001

- Plan
 - Measure η using CNS
 - Validate with VNA
- Approach
 - Total power calibration using WGNS
 - Polarimetric calibration using CNS

Results

Mode	SUM	DIFF
Channel A Temp	1400 K	2033 K
Channel B Temp	1248 K	1874 K
Expected Correlation	+0.6504	-0,7090
Measured Correlation	+0.6496	-0.6989

•
$$\eta_{\text{CNS}} = 0.9922$$

$$\eta_{VNA}$$
=0.9913

0.1% difference

- Low-power ADCs for low resolution apps
- ECL ADCs on test board dissipate ~6 W

Simulated 0.5-V Performance

 $F_{in} = 1.413 \text{ GHz}, F_{s} = 500 \text{ MHz}$ NASA Earth Science
Technology Conference

Predicted System Metrics

- Input Bandwidth: > 2.0 GHz
- Sampling Rate: > 1.0 GHz
- Resolution: 2-bit (sign & mag) or 3-level
- Effective-Number-Of-Bits: > 1.6 bits
- Power Supply=3.3V
 - 16 mA for input and core (52 mW)
 - 10 mA for LVDS outputs (32 mW)
 - 24 mA for 0.5-ULP outputs (80 mW)

Discussion

- Power/bandwidth challenge
 - Correlator-based digital receivers
 - Low-power CMOS and SiGe ASICs
- Demonstrated a benchtop (almost) low-power digital microwave polarimeter
- SiGe RF-ADCs out of fab: testing next month
- Will integrate RF-ADCs in Phase III (FY'05)
- Building blocks for a flight digital polarimeter